首页> 外文OA文献 >Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
【2h】

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

机译:非凸随机优化的随机拟牛顿法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we study stochastic quasi-Newton methods for nonconvexstochastic optimization, where we assume that only stochastic information ofthe gradients of the objective function is available via a stochasticfirst-order oracle (SFO). Firstly, we propose a general framework of stochasticquasi-Newton methods for solving nonconvex stochastic optimization. Theproposed framework extends the classic quasi-Newton methods working indeterministic settings to stochastic settings, and we prove its almost sureconvergence to stationary points. Secondly, we propose a general framework fora class of randomized stochastic quasi-Newton methods, in which the number ofiterations conducted by the algorithm is a random variable. The worst-caseSFO-calls complexities of this class of methods are analyzed. Thirdly, wepresent two specific methods that fall into this framework, namely stochasticdamped-BFGS method and stochastic cyclic Barzilai-Borwein method. Finally, wereport numerical results to demonstrate the efficiency of the proposed methods.
机译:在本文中,我们研究了用于非凸随机优化的随机拟牛顿法,其中我们假设只有目标函数梯度的随机信息可以通过随机一阶预言(SFO)获得。首先,我们提出了求解非凸随机优化问题的随机拟牛顿方法的一般框架。所提出的框架将经典的拟牛顿法将不确定性设置应用于随机设置,我们证明了它几乎可以收敛到平稳点。其次,我们为一类随机随机拟牛顿法提出了一个通用框架,该算法所进行的迭代次数是一个随机变量。分析了此类方法的最坏情况下的SFO调用复杂性。第三,提出了属于该框架的两种具体方法,即随机阻尼BFGS方法和随机循环Barzilai-Borwein方法。最后,通过端口数值结果证明了所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号